

REGIONAL CONFERENCE 2024 Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

The Fundamental Role of GNSS in Modern Surveying and Mapping to Support Climate Responsive Land Governance and to Enhance Disaster Resilience

AUTHORS

Sandesh Upadhyaya

Prabin Gyawali

Suresh Shrestha

Stallin Bhandari

Shanker KC

REGIONAL CONFERENCE 2024

Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

Presentation Outline

- Introduction
- Geodetic Infrastructure in Nepal
- Modern Surveying Methods for Disaster Risk Management
- GNSS for Informal Settlement Management
- GNSS for Engineering Survey
- **GNSS** for Disaster Resilience
- Discussion and Conclusion
- References

ORGANISED BY

REGIONAL CONFERENCE 2024

Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

Introduction

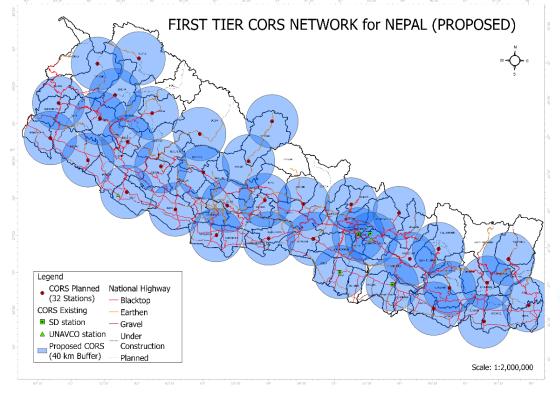
- GNSS due to its various capabilities and integration with other surveying instruments plays a crucial role in surveying and mapping domain.
- Geodetic infrastructure is fundamental to building and supporting climate-responsive land governance and disaster resilience.
- Climate responsive land governance involves integrating land use and management along with climate considerations to address the challenges of climate change.
- Disaster resilience refers to the ability of communities as well as systems to anticipate, prepare for, respond to and recover from the disasters.
- GNSS in modern surveying methods has directly and indirectly contributed to achieving climateresponsive land governance and disaster resilience.

REGIONAL CONFERENCE 2024

Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

Geodetic Infrastructure in Nepal

- Existing Horizontal reference frame (In collaboration of MoDUK and Survey Department)
- Nepal has gone through major and minor seismic events including mega earthquake 2015.
- Nepal hasn't updated the control stations since its establishment
- In realization of that, SD has established 4 CORS station and has the mandate to install 27 CORS Stations in this fiscal year
- One CORS Station in 70-80 km and later reduced to 30-40km
- CORS network will maintain the accurate horizontal reference frame leading to accurate surveys for climate-responsive land governance and enhancing disaster resilience


REGIONAL CONFERENCE 2024

Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

Proposed CORS Network

- 4 installed CORS Stations at Survey Department premises, Nagarkot, Bara and Mahottari.
- Precise Positioning datasets after establishment will be crucial for disaster resilience, tenure security, climate-responsive land governance, spatial planning, land administration, engineering survey, etc.

REGIONAL CONFERENCE 2024

Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

Modern Surveying Methods for Disaster Risk Management

• UAVs combined with GNSS, are used for disaster monitoring, early warning systems, post-disaster assessment, search missing persons, etc.

• LiDAR in combination with GNSS are used in emergency response, evaluating the impact of disasters, assessment of landscape change, identifying disasters risk and environmental alterations.

• RTK GNSS network systems are employed in earthquake prone areas to monitor crustal movements and provide early warning systems.

REGIONAL CONFERENCE 2024

Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

GNSS for Informal Settlement Management

- Management of Squatters and Informal Settlements is mentioned in Constitution of Nepal Part 4, Article 50 (J).
- Government of Nepal has started using GNSS control points for detail survey and satellite image georeferencing as well.
- GNSS applications for informal settlement management directly supports UN SDG 1 and UN SDG 11.

REGIONAL CONFERENCE 2024

Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

Continue...

- Initially registered as "Parti Jagga" i.e. barren lands.
- Later, those parcels became informal settlements informally.
- Formal transaction were not possible.
- So, detailed cadastral survey was done with the use of GNSS control stations.
- Then, Cadastral information were updated and Land Ownership Certificate were distributed based on those cadastral maps.

REGIONAL CONFERENCE 2024

Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

GNSS for Engineering Survey

- Major issue with the development projects in Nepal is compensating private lands used under the project area and accurate demarcation of Right of Way.
- This leads to proxy demarcation, mismatching of identified parcels and financial issues.
- But now, GNSS control points have almost eliminated this issue, as they are used to georeference the survey data and transform them to overlay with cadastral maps.
- Thus, project designs and corridors can be overlaid on cadastral data to identify affected parcels.
- GNSS for Engineering Survey supports UN SDG 9.

REGIONAL CONFERENCE 2024

Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

Continue...

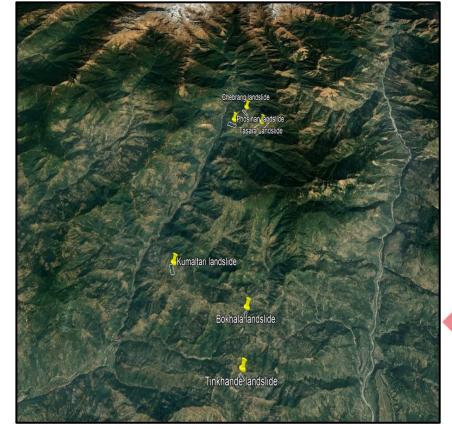
- A Section of road development project in Nepal.
- GNSS survey was done for topographical survey and cadastral analysis process.
- GNSS control points were used to georeference the orthomosaic and DEM.
- Then, Cadastral data were overlaid on survey data and was georeferenced using same GNSS points.

REGIONAL CONFERENCE 2024

Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

GNSS for Disaster Resilience

- GNSS can be effectively utilized for monitoring, modelling and determining the characteristics of various disasters in order to support disaster risk reduction and management.
- CORS provides the time series position, which provides subtle motion and subsidence rate of land for detection of landslide potential area.
- CORS has become a widely used technique for earthquake risk assessment and determine dynamic ground displacement during the earthquake.
- Geospatial products combined with GNSS-supported positioning are used to prepare thematic maps that helps in prevention, mitigation, preparedness, emergency response, rehabilitation and reconstruction.


REGIONAL CONFERENCE 2024

Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

Continue...

- GNSS control points and LiDAR survey were used to monitor the movement of earth mass in pre and post monsoon.
- Temporal datasets of GNSS control points were utilized to examine the spatial changes and UAV LiDAR survey to understand 3D position of surface.
- This analysis helped to understand the effect of monsoon, pattern of slides and early forecasting if any abnormalities in velocity of earth mass is seen.
- Among six zones, three zones were highly reactive to monsoon and thus road construction were rerouted.

ORGANISED BY

PLATINUM SPONSOR

REGIONAL CONFERENCE 2024

Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

Discussion and Conclusion

- GNSS provides accurate location information, crucial for tracking the movement and impact of various disasters.
- GNSS is utilized in every stage of disasters through integration with other geospatial technologies.
- Building nationwide CORS network and maintaining can be challenging, so coordinated efforts, adequate funding and robust policies is required to fully leverage the potential of GNSS.
- As GNSS has founds its application in almost all domains, future advancement of this technology for disaster management, climate resilience and land governance have huge potential.
- Thus, by providing precise spatial data, GNSS aids in achieving Sustainable Development Goals.

REGIONAL CONFERENCE 2024

Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

References

- Abidin, H. Z., & Syafii, M. A. (2022). The Utilization of GNSS for Disaster Risk Reduction Management in Indonesia: Status and Challenges. January. https://doi.org/10.13140/RG.2.2.12634.47045
- Bhattarai, R., Alifu, H., Maitiniyazi, A., & Kondoh, A. (2017). Detection of Land Subsidence in Kathmandu Valley, Nepal, Using DInSAR Technique. *Land*, 6(2), 39. https://doi.org/10.3390/land6020039
- Chhatkuli, R. R. (2007). From Cadastral Survey Plan to Geographic Information Infrastructure: Fifty Years of Evolution of Geo-spatial Data Policy in Nepal. *Journal on Geoinformatics, Nepal*, 57–61. https://doi.org/10.3126/njg.v6i1.51227
- Galetzka, J., Melgar, D., Genrich, J. F., Geng, J., Owen, S., Lindsey, E. O., Xu, X., Bock, Y., Avouac, J.-P., Adhikari, L. B., Upreti, B. N., Pratt-Sitaula, B., Bhattarai, T. N., Sitaula, B. P., Moore, A., Hudnut, K. W., Szeliga, W., Normandeau, J., Fend, M., ... Maharjan, N. (2015). Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal. *Science*, *349*(6252), 1091–1095. https://doi.org/10.1126/science.aac6383
- KC, S., & Acharya, T. D. (2022). Advancements of Geodetic Activities in Nepal: A Review on Pre- and Post-2015 Gorkha Earthquake Eras with Future Directions. *Remote Sensing*, 14(7), 1586. https://doi.org/10.3390/rs14071586

REGIONAL CONFERENCE 2024

Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

