

SSESSING CORAL REEF CHANGES THROUGH SUPERVISED CLASSIFICATION AND ITS CORRELATION WITH SST AND CHLOROPHYLL-A: A REMOTE SENSING APPROACH.

Authors:

Er. Pradeep Kumar Upadhyay (Presenter)

Er. Arun Kumar Bhomi | Er. Rabina Poudyal | Er. Yub Raj Kawar | Er. Prawal Parajuli

Supervisors:

Er. Ajay Thapa | Er. Pragya Panta | Er. Saurav Raj Khanal

Kathmandu, Nepal 14–16 November

Introduction

<u>Corals</u>

- Colonial organisms,
- Composed of hundreds to hundreds of thousands of individual animals, called polyps (Barnes, 1987)

Coral bleaching

 Corals become white due to loss of symbiotic algae and photosynthetic pigments (NOAA, 2024)

Remote Sensing for Coral Reef Monitoring

- Remote Sensing can help us to analyze the reef distribution on a high spatial resolution and temporal frequency.
- It can help us observe and monitor coral bleaching due to heat, ocean acidification, and other environmental parameter.
- It can help us monitor reef habitat destruction due to anthropogenic activities.

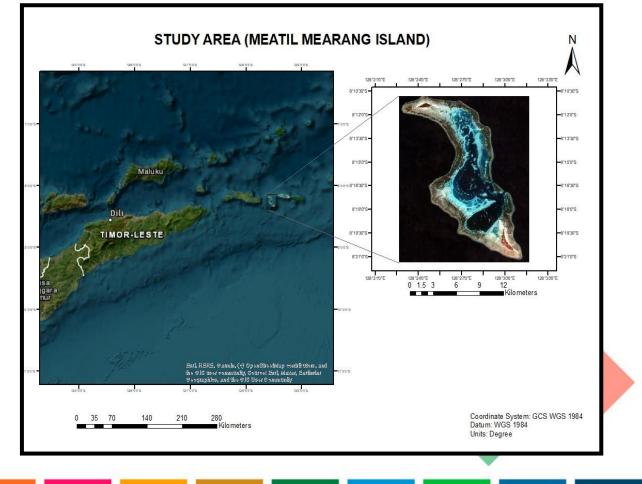
ORGANISED BY

The primary objective of the project is:

To analyze the trends of coral reefs through supervised classification and time

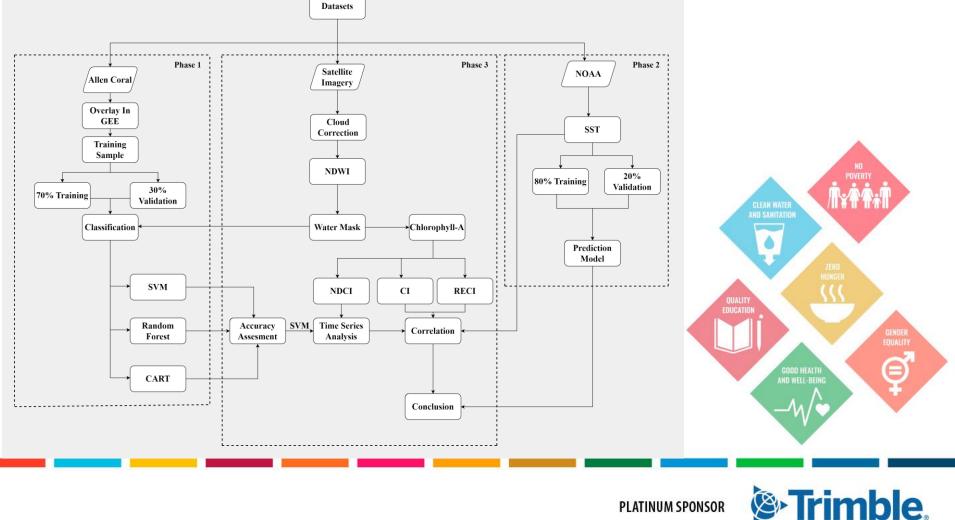
series analysis and correlating it with SST and Chlorophyll-A.

The secondary objectives of the project are:


- To make time series analysis of SST, and chlorophyll-A,
- To build the prediction model of SST.

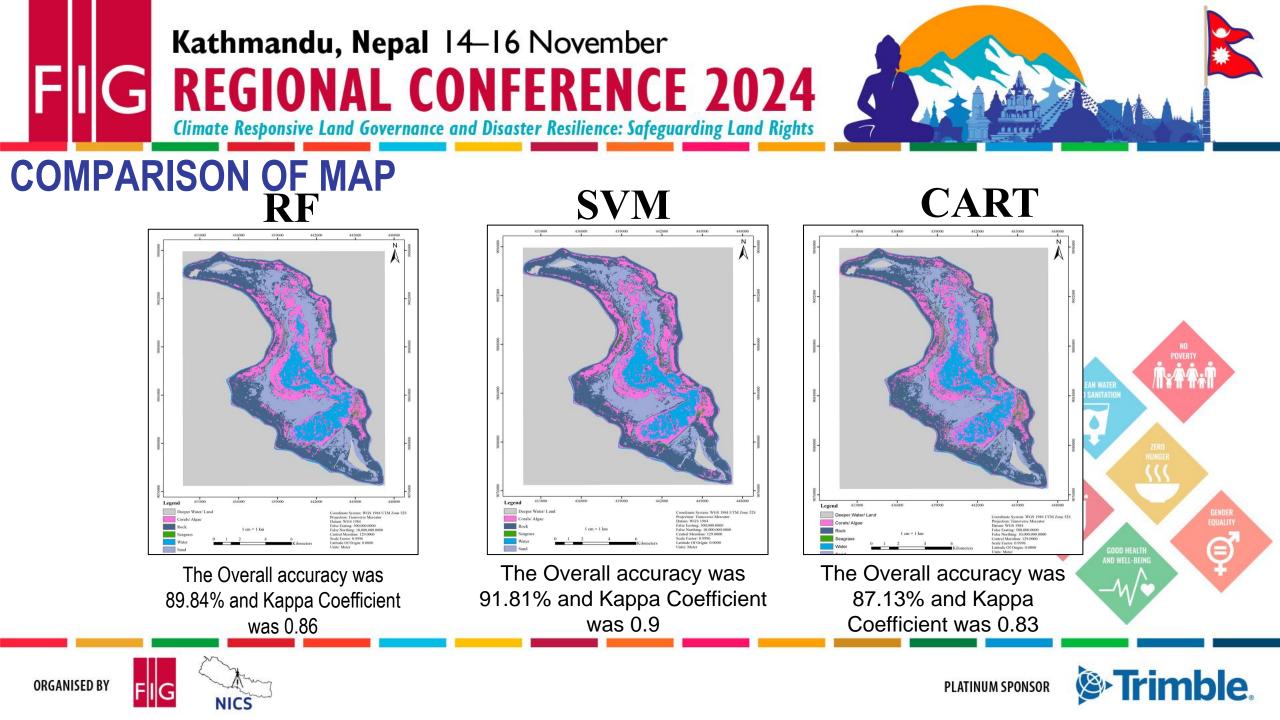
Study Area

- Inside the Coral Triangle,
- Nearer to the Timor-Leste,
- Name: Meatil Mearang Island
- Area: 323 km².
- Rich in marine life but threatened by climate change and human activities.



PLATINUM SPONSOR

S-Trimble.



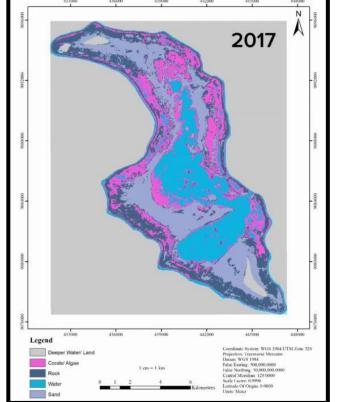
Ë

ORGANISED BY

FIG NIC

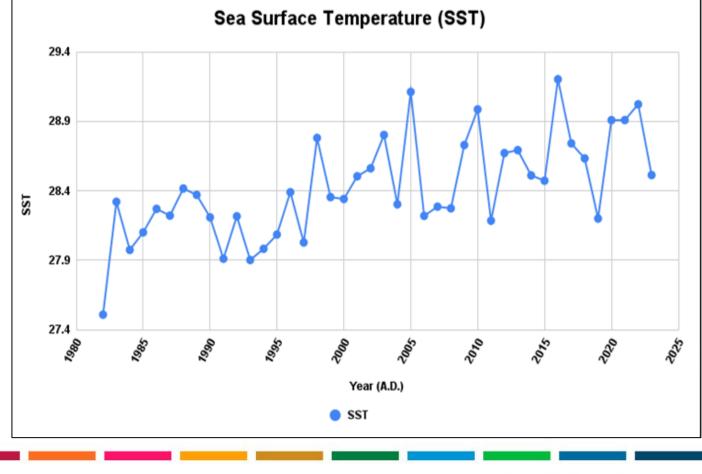
COMPARISON

Class	RF		SVM		CART	
	Producer Accuracy	Consumer Accuracy	Producer Accuracy	Consumer Accuracy	Producer Accuracy	Consumer Accuracy
Coral/Algae	0.9002	0.9113	0.9299	0.9061	0.7898	0.8966
Rock	0.9107	0.7375	0.853	0.8592	0.8559	0.7191
Seagrass	0.0869	0.6667	0.0869	0.5	0.6087	0.1647
Water	0.9974	0.9949	1	0.9961	0.9987	0.9974
Sand	0.9332	0.9611	0.9421	0.9367	0.8372	0.9538

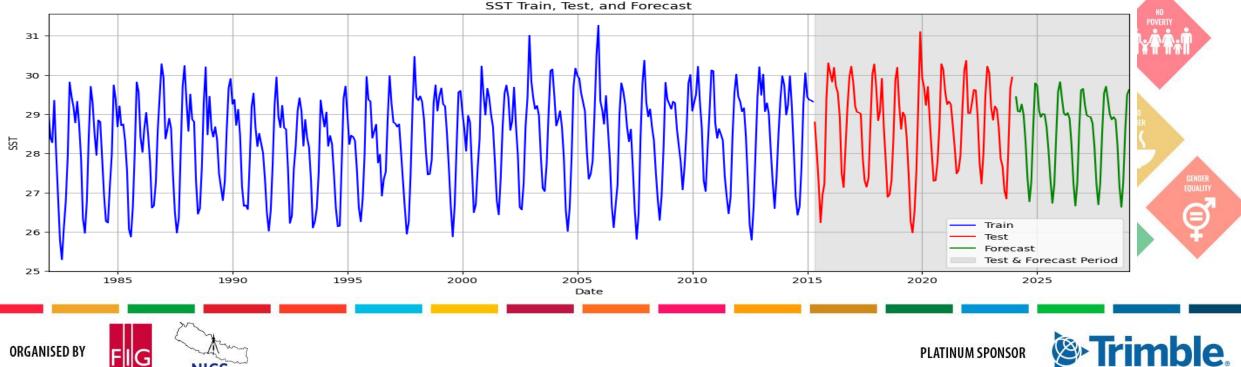

Trimble.

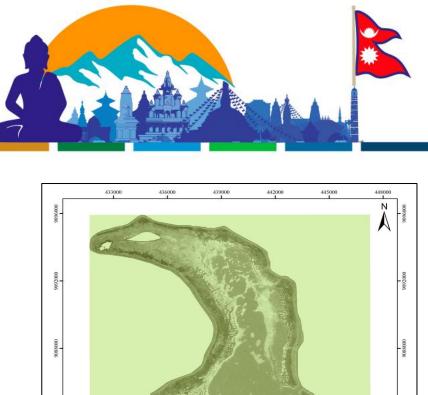
- IIIIe Jelles
- Time Period: 2016 2023 (8 years)
- Data Analysis:

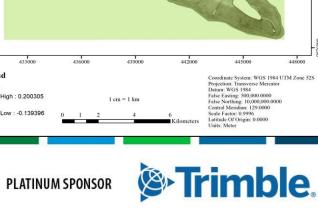
S.N.	Year	Area (km²)	Area (%)
1	2016	27.20	8.42
2	2017	26.77	8.29
3	2018	27.80	8.61
4	2019	27.81	8.61
5	2020	26.73	8.28
6	2021	29.80	9.23
7	2022	25.94	8.03
8	2023	31.06	9.62



- Used Google Earth Engine (GEE) to calculate the mean SST,
- Time Period: 1982 to 2023
- Data Used: NOAA Optimum Interpolation Sea Surface Temperature (OISST) dataset.




Prediction Model


- Autoregressive integrated moving average model for SST forecasting,
- RMSE of 0.5 and 1.44% error,
- Forecasted Maximum SST is 29.82° and Forecasted Minimum SST is 26.63°

- Change in concentration of chlorophyll-A is also an indicator of coral bleaching.
- Three different indices, NDCI, CI and RECI are calculated.

Legend

Value

Correlation Analysis

- Pearson's correlation coefficient was used.
- Coral's weak negative correlation with SST and positive correlation with Chlorophyll-A

Class	Coral	SST	NDCI	CI	RECI
Coral	1	-0.27047	0.138267	0.220723	0.242855
SST	-0.27047	1	-0.06031	-0.05033	-0.04293
NDCI	0.138267	-0.06031	1	0.96053	0.920272
CI	0.220723	-0.05033	0.96053	1	0.992684
RECI	0.242855	-0.04293	0.920272	0.992684	1

S-Trimble.

Lack of in-situ data.

ORGANISED BY

- Secondary source, Allen Corals is 60-90% accurate.
- Low resolution of datasets

NICS

Conclusion and Recommendation

- Negative correlation between corals and SST and weak positive with chlorophyll-A,
- SVM was found to be the best-supervised classification algorithm,
- SST forecast shows the future trends for SST.
- Use other factors too for coral mapping

ORGANISED B

- Use of high-resolution data can yield better results
- Remote sensing approach is best for large-scale monitoring

SDG 15: Life Under Water

- Allen Coral Atlas (2020). Imagery, maps and monitoring of the world's tropical coral reefs. Zenodo. DOI: doi.org/10.5281/zenodo.3833242
- National Oceanic and Atmospheric Administration. (2024). NOAA confirms 4th global coral bleaching event. Retrieved from https://www.noaa.gov/news-release/noaa-confirms-4th-global-coral-bleaching-event
- Barnes, R.D. 1987. Invertebrate Zoology; Fifth Edition. Fort Worth, TX: Harcourt Brace Jovanovich College Publishers. pp. 92-96, 127-134, 149-162.
- McFEETERS, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
- Marco Agustín, L. C., Laura, F. R., Juan Sebastián, Z. S., Oscar, H. R., & Carlos, L. C. (2006). Correlation of chlorophyll a and total carotenoid concentrations with coral bleaching from locations on the Pacific coast of Mexico. Marine and Freshwater Behaviour and Physiology, 39(4), 279–291. https://doi.org/10.1080/10236240600976580
- Tran Thi Van et al 2022 IOP Conf. Ser.: Earth Environ. Sci. 964 012004 https://doi.org/10.1088/1755-1315/964/1/012004

ORGANISED BY

Thank You! Any Queries?

Pradeep Upadhyay Geomatics Engineer pradeepupadhyay0128@gmail.com 9867903912

S-Trimble.

