FIG REGIONAL CONFERENCE 2024 REGIONAL CONFERENCE 2024 Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

In proving Cadastral Accuracy for Disaster Management: The Role of Segment Anything Model (SAM) in Digitizing Historical Cadastral Maps

Presented By: Er. Sanjeevan Shrestha Under-Secretary Ministry of Land Management, Co-operatives and Poverty Alleviation

(Co-authors: Er. Tina Baidar, Er. Shangharsha Thapa)

Contents

ORGANISED BY

- Introduction to cadastral challenges in Nepal and approaches in automatic digitization
- Study Focus and Objectives
- Materials and Methods
- Results and Analysis
- Conclusion and Recommendations

NICS

Natural Disaster and Impacts on Land Administration

Cadastral record digitization and its challenges

Department of Land Information and Archive (DoLIA)

ORGANISED BY

Scanned Analog Cadastral Map

Image: Display bit with the second second

NICS

PLATINUM SPONSOR

S-Trimble.

Automatic extraction of cadastral records

Segment Anything Model (SAM)

- Released by Meta Al research zero-shot learning
- Can adapt to new datasets and perform unfamiliar tasks using 'prompting' techniques even with little or nor prior training

Objectives

Kathmandu, Nepal 14-16 November **REGIONAL CONFERENCE 2024**

PLATINUM SPONSOR

Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights

Materials and Methods

ORGANISED BY

Cadastral Data Synthesis

NICS

ORGANISED BY

Key five attributes: Shape/Parcel Density Parcel Size and Eccentricity Parcel Boundary Visibility Noise condition Scanning resolution

CLEAN WATER NO SAMITATION CLEAN WATER NO SAM

Prompt Configuration

Combination

Multi-Point

S-Trimble.

ORGANISED BY FIG

NICS

Model Evaluation

ORGANISED BY

Visual Inspection

Trimble.

Result and Analysis: Parcel Density

Figure : Visualization of prediction of three variations of prompts of zero-shot segmentation of SAM on cadastral parcel extraction task from historical scanned cadastral images (i) based on parcel density (a) equally sized; (b) dense and variety of pixel

Equal Size – High accuracy

Dense and Variety of Parcels – noticeable decline in accuracy

Underestimation mitigated by employing the combination

Proximity of adjacent parcel – boundary confusion and misclassification

Limited resolution – difficulty in capturing finer details

ORGANISED BY

PLATINUM SPONSOR

rimble

Result and Analysis: Parcel Size and Eccentricity

Figure : Visualization of prediction of three variations of prompts of zero-shot segmentation of SAM on cadastral parcel extraction task from historical scanned cadastral images (ii) based on combination of parcel size and its eccentricity.

ORGANISED BY

All sized parcel – accurately extracted – matched well defined geometric shape (eccentricity close to one)

Underestimation – delineating larger parcels with high eccentricity

Segmentation accuracy- highly correlated with their eccentricity – heterogeneity within the parcel

PLATINUM SPONSOR

rimble

Result and Analysis: Visibility

All prompt produced promising results in delineating parcels, even under varying degrees of boundary clarity or ambiguity

Figure : Visualization of prediction of three variations of prompts of zero-shot segmentation of SAM on cadastral parcel extraction task from historical scanned cadastral images (i) based on parcel visibility

ORGANISED BY

Result and Analysis: Noise

ORGANISED BY

Figure : Visualization of prediction of three variations of prompts of zero-shot segmentation of SAM on cadastral parcel extraction task from historical scanned cadastral images (i) Noise level

Noise within boundary – didn't impact performance

Noise adjacent to boundaries – significantly decrease accuracy

Model either failed to delineate parcel or mistakenly merged two adjacent parcels into one.

Result and Analysis: DPI

Increasing the scanning resolution – didn't increase accuracy

Delineation capability further decreased with higher scanning accuracy

Reduction in performance – increased heterogeneity in higher resolutions

Figure : Visualization of prediction of three variations of prompts of zero-shot segmentation of SAM on cadastral parcel extraction task from historical scanned cadastral images (i) Different DPI

PLATINUM SPONSOR

Frimble

- Conducted comprehensive analysis of the zero shot segmentation capabilities of SAM for cadastral data extraction from scanned historical cadastral maps under various scenarios and complexities
- Combination of base prompts consistently outperforms individual base prompts in the zero shot learning appropriation across all datasets.
- demonstrated the potential to significantly reduce human workload and error with minimal or no supervision

ORGANISED BY

Challenges/Limitations

ORGANISED BY

- Faces challenges when handling noisy data near boundaries and areas with complex parcel configurations
- Occurrence of false positives between segmented parcels remains a persistent issue.
- initial experiment was limited to exploring SAM's zero-shot capabilities
- These challenges highlights the need for GIS with SAM, along with human oversight, to ensure the creation of accurate and complete cadastral databases

• On evaluating SAM's one-shot segmentation capabilities as well as SAM-2 model

ORGANISED BY

- potential to integrate with diverse **remote sensing data**, and integrate with cadastral map
- well-suited for Nepal's varied geographic conditions, especially in post-disaster scenarios like earthquakes or floods.
- By incorporating SAM into existing GIS platforms and remote sensing workflows, Nepal's cadastral system can be made more resilient to natural disasters and ongoing land use challenges

Any Questions!!!

NICS

ORGANISED BY