Kathmandu, Nepal 14–16 November **REGIONAL CONFERENCE 2024** *Intelligente Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights*

Land Cover Change Before and After the Sendai Framework of Disaster

Pragya Pant (Kathmandu University) Narayan Thapa (ICIMOD) Sujan Nepali (ICIMOD) Suman Sanjel (RIMES)

Kathmandu, Nepal 14–16 November **REGIONAL CONFERENCE 2024** *Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights*

Introduction

ORGANISED BY

Priority of Sendai Framework

PLATINUM SPONSOR

Frimble

Land Cover Change

- An indicator of environmental health and sustainability.
- Urbanization and climate change amplify disaster risks
- To achieve SDGs by 2030, these risks need to be addressed.

Sendai Framework for Disaster Risk Reduction (2015-2030)

- Goal: Improve resilience and disaster preparedness
- Theme "Build Back Better" after a disaster.

Objectives

- To analyze the land cover change in alignment with the Sendai Framework for Disaster Risk Reduction (2015)
- To highlight the significant shifts in land cover patterns (2000 to 2015 and 2015 to 2021) and its probable causes

G Kathmandu, Nepal 14–16 November **REGIONAL CONFERENCE 2024** *Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights*

- Nepal's Vulnerability is ranked 4th globally for climaterelated hazards (Maplecroft, 2010)
- Policies targeting the Sendai Framework (e.g., Disaster Risk Reduction and Management Act, Monsoon Preparedness and Response Plan).

G Kathmandu, Nepal 14–16 November **REGIONAL CONFERENCE 2024** *Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights*

Methodology

Data Used

 ICIMOD land cover datasets from RDS (Regional Database System)

Land Cover Types:

Main Land cover class	Description
Waterbody	Rivers are natural flowing water bodies and typically have elongated shapes
	lakes, and ponds are potential standing water bodies.
Snow and Glacier	This class describes perennial snow(persistence> 9 months per year) and
	Perennial ice in movement
Forest	Land spanning more than 0.5 ha with trees higher than 5 m and a canopy cover
	of more than 10% that is predominantly under agriculture or urban land use.
Riverbed	A tract of land without vegetation surrounded by the water of an ocean, lake, or
	stream, it usually includes any accretion in a river course.
Built-up area	Built-up areas refer to artificial structures such as towns, villages, industrial
	areas, airports, etc.
Cropland	This category includes arable and tillage land and agroforestry systems where
	vegetation falls below the thresholds used for the forest land category, consistent
	with the selection of national definitions.
Bare rock	Non-vegetated areas with rock surface.
Grassland	Areas covered by herbaceous vegetation with cover ranging from closed to oper
	(15-100%). This category includes rangeland and pasture that is not considered
	cropland.

Methodology Cont.

Change Detection Methods

- Categorical Change Detection
- Pixel Value Change Detection

Pixel-Based Categorical Change Detection

FIGKathmandu, Nepal 14–16 November **REGIONAL CONFERENCE 2024** *Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights*

Landcover 2015 Landcover 2000 Legend Legend Water body Water body Snow and glacier Snow and glacie Fore st Fore st Riverbed Riverbed Built-up area Built-up area Cropland Cropland 1:700 000 Bare rock Bare rock Grassland Grassland Landcover 2021 Landcover Change 300 200 ਨੂੰ -100 2000-2015 2015-2021 Legend Time period Water body Snow and glacier Forest ■ Water body Snow and Forest Riverbed Riverbed glacier Built-up area ■ Built-up area - Cropland ■ Bare rock ■ Grassland Cropland 1:700 000 Bare rock Grassland

Figure: Land cover at different years and change

Result

Result

Figure: Land cover change with respect to the Sendai framework

Trimble.

FIGKathmandu, Nepal 14–16 November **G REGIONAL CONFERENCE 2024** *Climate Responsive Land Governance and Disaster Resilience: Safeguarding Land Rights*

Monitoring the change

Discussion

ORGANISED BY

- There is an increase in forest cover with a 6.76% increase till 2015 to a 2.08% increase till 2021
- Increase in the built-up area by twice after 2015 resulting from rapid urbanization.
- Increase in area of bare rock resulting from activities like landslides and floods after 2015, also triggered by the Gorkha Earthquake in 2015.
- Local people's willingness to live near riverbeds, increasing the vulnerability.
- Multi-criteria analysis has proven effective planning of constructional activities.

- Achieving the Sendai Framework's target requires integrating scientific methodologies with local stakeholder involvement.
- Spatial planning and nature-based solutions.

NICS

ORGANISED BY

S-Trimble.

Thank You!

Trimble.

